クエリーの発行(まだ途中)¶
この章では, リレーショナルデータベースに対して実行されることの多い, 基本的な CRUD 操作について述べます:
Model.create()
, INSERT クエリーの発行.Model.save()
とModel.update()
, UPDATE クエリーの発行.Model.delete_instance()
とModel.delete()
, DELETE クエリーの発行.Model.select()
, SELECT クエリーの発行.
Note
この文書では, Postgresql Exercises Web サイトにある大量のクエリー例を取り入れています.クエリー例の一覧は query examples ドキュメントにあります.
新しいレコードを作成する¶
Model.create()
を使って新しいモデルのインスタンスを作成できます.
このメソッドはキーワード引数を受け取りますが, キーワードのキーはモデルのフィールド名に対応しています.
新しいインスタンスが返され, テーブルに行が追加されます.
>>> User.create(username='Charlie')
<__main__.User object at 0x2529350>
これはデータベースに新しい行を INSERT します. プライマリキーが自動的に取り出され, モデルのインスタンスに格納されます.
別案として, プログラム的にモデルインスタンスを組み立てて,
save()
を呼ぶこともできます:
>>> user = User(username='Charlie')
>>> user.save() # save() returns the number of rows modified.
1
>>> user.id
1
>>> huey = User()
>>> huey.username = 'Huey'
>>> huey.save()
1
>>> huey.id
2
モデルが外部キーを持つ場合, 新しいレコードを作成する際に, モデルインスタンスを外部キーフィールドに直接代入できます.
>>> tweet = Tweet.create(user=huey, message='Hello!')
関連するオブジェクトのプライマリキーの値を使うこともできます:
>>> tweet = Tweet.create(user=2, message='Hello again!')
もし単にデータを insert したいだけで, モデルインスタンスを作る必要がない場合, Model.insert()
が使えます:
>>> User.insert(username='Mickey').execute()
3
insert クエリーを実行した後, 新しい行のプライマリキーが返されます.
Note
一括 insert の際の速度を上げるための方法がいくつかあります. 詳細は 一括 insert の方法の章を確認してみてください.
一括 insert¶
たくさんのデータを素早くロードするための方法をいくつかご紹介します.
素直過ぎるアプローチとしては, 単にループの中で Model.create()
を呼ぶことが挙げられます:
data_source = [
{'field1': 'val1-1', 'field2': 'val1-2'},
{'field1': 'val2-1', 'field2': 'val2-2'},
# ...
]
for data_dict in data_source:
MyModel.create(**data_dict)
上記のアプローチは, いくつかの理由により遅くなります:
ループをトランザクションで囲んでいない場合,
create()
への呼び出しのたびにトランザクションが生成されます. これは極端に遅くなってしまいます!このやり方の場合, これに合った Python のロジックがたくさんあります。これはそれらそれぞれに対して
InsertQuery
を生成し, それらが SQL にパースされる必要があります.このため, データベースに対して(SQL の生のバイトストリームという意味で)パース対象となる大量のデータを送りつけることになります.
私達は last insert id を取り出しますが, このために追加のクエリーを発行しなければならないケースがあります.
これを単に atomic()
を使ってトランザクションで囲むだけで, 劇的に速くなります.
# この方が速くなります.
with db.atomic():
for data_dict in data_source:
MyModel.create(**data_dict)
上記のコードでは, まだ 2,3,4 の弱点があります. insert_many()
を使うとさらに爆速になります. このメソッドはリストまたは辞書を受け取り, 1回の単独クエリーで複数の行を insert します.
data_source = [
{'field1': 'val1-1', 'field2': 'val1-2'},
{'field1': 'val2-1', 'field2': 'val2-2'},
# ...
]
# 複数行を INSERT するための, より速いやり方
MyModel.insert_many(data_source).execute()
insert_many()
メソッドは行タプルのリストも受け取れるので, 対応するフィールドを指定することもできます:
# タプルの INSERT はできますが...
data = [('val1-1', 'val1-2'),
('val2-1', 'val2-2'),
('val3-1', 'val3-2')]
# 値がどのフィールドに対応するのかを指定する必要があります.
MyModel.insert_many(data, fields=[MyModel.field1, MyModel.field2]).execute()
一括 insert をトランザクションで囲むのも好ましいやり方です:
# もちろんこれをトランザクションで囲むこともできます:
with db.atomic():
MyModel.insert_many(data, fields=fields).execute()
Note
SQLite ユーザは一括 insert に際して注意すべき事項があります. 特に SQLite3 のバージョンが
3.7.11.0 もしくはそれ以降の場合, 一括 insert 用の API が使えるという利点があります.
さらに SQLite では、 SQL クエリー中のバインド変数の数がデフォルトで 999
に制限されています.
一括で行を insert する¶
データソース中の行数次第では, それらを複数に分割する必要があるケースがあります. 特に SQLite はクエリーごとの変数が 999 に制限 されています(バッチのサイズは概ね 1000 / 行の長さ).
1回分のデータを複数のブロックに分割するためのループを書くことができます (このケースでは, トランザクションを使うことが 強く推奨されます .
# 一度に 100 行ずつ insert する
with db.atomic():
for idx in range(0, len(data_source), 100):
MyModel.insert_many(data_source[idx:idx+100]).execute()
Peewee には chunked()
ヘルパー関数が用意されており, これを使うと一般的な
iterable(繰り返しループ)を 効率的に batch-size の大きさの iterable に変換できます:
from peewee import chunked
# 一度に 100 行ずつ insert する
with db.atomic():
for batch in chunked(data_source, 100):
MyModel.insert_many(batch).execute()
別の方法¶
Model.bulk_create()
メソッドは Model.insert_many()
とよく似た動作をします。違うところは,
未保存の(unsaved)モデルインスタンスのリストを受け取って insert を行い,
またオプションで batch-size パラメータを受け付けるところです.
bulk_create()
API の使い方は以下のとおりです:
# 一例として, ファイルからユーザ名のリストを読み込む
with open('user_list.txt') as fh:
# 未保存の User インスタンスのリストを作成する
users = [User(username=line.strip()) for line in fh.readlines()]
# 操作をトランザクションで囲み, 一度に 100 個ずつ users に insert する
with db.atomic():
User.bulk_create(users, batch_size=100)
Note
( RETURNING
句をサポートしている) Postgresql をお使いの場合,
前述の未保存のモデルインスタンスでは,
それらに対して新しいプライマリキーの値が自動的に付与されます.
さらに, Peewee では Model.bulk_update()
を提供しています.
これはモデルのリストにおける1つ以上のカラムを効率的に update します.
以下に例を示します:
# まず u1, u2, u3 の3つのユーザを作成します
u1, u2, u3 = [User.create(username='u%s' % i) for i in (1, 2, 3)]
# 次に user のインスタンスを変更します.
u1.username = 'u1-x'
u2.username = 'u2-y'
u3.username = 'u3-z'
# 3つのすべての user を一つの update クエリーで update します.
User.bulk_update([u1, u2, u3], fields=[User.username])
Note
巨大なオブジェクトのリストを扱う場合, 適切な batch_size を指定し,
かつ bulk_update()
の呼び出しを Database.atomic()
で囲むようにしてください:
with database.atomic():
User.bulk_update(list_of_users, fields=['username'], batch_size=50)
別の方法として Database.batch_commit()
ヘルパーを使い, batch-size
になったトランザクションの中で行ブロック(chunks of rows)を処理することもできます.
このメソッドは, Postgresql 以外のデータベースを使っている場合に,
新しく作られた行のプライマリキーを取得しなければならないケースにおける回避策を提供します.
# insert する行データのリスト
row_data = [{'username': 'u1'}, {'username': 'u2'}, ...]
# row_data には 789 個のデータが入っているとする. 以下のコードでは,
# 合計8個のトランザクションが発生する(7x100 行 + 1x89 行)
for row in db.batch_commit(row_data, 100):
User.create(**row)
他のテーブルからの一括ローディング¶
一括ロード対象のデータが別のテーブルに入っている場合, ソースが SELECT
クエリーであるような INSERT クエリーを作成することもできます.
Model.insert_from()
メソッドを使ってみてください:
res = (TweetArchive
.insert_from(
Tweet.select(Tweet.user, Tweet.message),
fields=[TweetArchive.user, TweetArchive.message])
.execute())
上記のクエリーは, 以下の SQL と同じ意味です:
INSERT INTO "tweet_archive" ("user_id", "message")
SELECT "user_id", "message" FROM "tweet";
既存のレコードを update する¶
モデルインスタンスがプライマリキーを持つようになった場合, それ以降の save()
へのコールに対しては, 別レコードの INSERT ではなく UPDATE が行われるようになります.
そのモデルのプライマリキーは変更されません:
>>> user.save() # save() は変更された行数を返す
1
>>> user.id
1
>>> user.save()
>>> user.id
1
>>> huey.save()
1
>>> huey.id
2
複数のレコードを update したい場合は UPDATE クエリーを発行します.
以下の例では、昨日以前に作成された Tweet
オブジェクトを update して、それらを published の状態にします.
Model.update()
はキーワード引数を受け付けますが, その際のキーはモデルのフィールド名に対応します:
>>> today = datetime.today()
>>> query = Tweet.update(is_published=True).where(Tweet.creation_date < today)
>>> query.execute() # Returns the number of rows that were updated.
4
詳細は Model.update()
, Update
, Model.bulk_update()
のドキュメントを参照してください.
Note
(カラムの値をインクリメントするといった)アトミックな update の実行に関する詳細情報については, atomic update レシピを参照してください.
アトミックな update¶
Peewee ではアトミックな update を実行できます. いくつかのカウンターを update する必要があるとしましょう. ネイティブなアプローチを使う場合は以下のようになるでしょう:
>>> for stat in Stat.select().where(Stat.url == request.url):
... stat.counter += 1
... stat.save()
このようなコードを書いてはいけません! これは遅いだけではなく脆弱であり, 複数のプロセスが同時にカウンターを update しようとしている場合に競合が発生する恐れがあります.
代わりに update()
を使ってカウンターを自動的に update するようにしましょう:
>>> query = Stat.update(counter=Stat.counter + 1).where(Stat.url == request.url)
>>> query.execute()
以下のように複雑な update 文を作ることもできます. 従業員へのボーナスを, 前回のボーナス支給額にその人の給与の 10% を上乗せした額としましょう:
>>> query = Employee.update(bonus=(Employee.bonus + (Employee.salary * .1)))
>>> query.execute() # みんなにボーナスをやるぞ!
サブクエリーを使ってカラムの値を更新することもできます. User
モデルの中に非正規化されたカラムがあって, そこにはユーザがツイートを行った回数が入っており,
これを定期的に更新することを考えます.これを実現するには以下のようになるでしょう:
>>> subquery = Tweet.select(fn.COUNT(Tweet.id)).where(Tweet.user == User.id)
>>> update = User.update(num_tweets=subquery)
>>> update.execute()
Upsert¶
Peewee では変則的なタイプである upsert 機能をサポートしています.
SQLite(3.24.0 以前)もしくは MySQL について, Peewee では replace()
を提供しており、これはレコードを insert して, その際に制約違反があれば既存のレコードを置き換えます.
replace()
と on_conflict_replace()
の例を示します:
class User(Model):
username = TextField(unique=True)
last_login = DateTimeField(null=True)
# ユーザを insert または update する. "last_login" の値は
# そのユーザが既存ユーザであるかどうかを問わずに update される.
user_id = (User
.replace(username='the-user', last_login=datetime.now())
.execute())
# これも同等の動きをする:
user_id = (User
.insert(username='the-user', last_login=datetime.now())
.on_conflict_replace()
.execute())
Note
もし insert した際に制約条件が発生したら単に無視したい場合, replace に加えて,
SQLite, MySQL, Postgresql では ignore アクションを提供しています
( on_conflict_ignore()
を参照).
MySQL では ON DUPLICATE KEY UPDATE 句を通した upsert をサポートしています. 以下に例を示します:
class User(Model):
username = TextField(unique=True)
last_login = DateTimeField(null=True)
login_count = IntegerField()
# 新しいユーザを insert する
User.create(username='huey', login_count=0)
# ユーザのログインをシミュレートする.
# ログインカウントとタイムスタンプの両方が正しく作成または update される.
now = datetime.now()
rowid = (User
.insert(username='huey', last_login=now, login_count=1)
.on_conflict(
preserve=[User.last_login], # insert した時の値を使う
update={User.login_count: User.login_count + 1})
.execute())
上記の例を使うと, 必要であれば何度でも upsert クエリーを発行できます. ログイン回数は自動的にインクリメントされ, last_login カラムは update され, 重複行が発生することがありません.
Postgresql と SQLite (3.24.0 以降)では, 別の文法により提供しています. これは, どの制約違反が競合解決のトリガーとなるべきなのか, およびどの値を更新/保持すべきかを, より細かい粒度で制御することが可能です.
on_conflict()
を使って Postgresql スタイル(もしくは SQLite 3.24+) で
upsert する例を以下に示します:
class User(Model):
username = TextField(unique=True)
last_login = DateTimeField(null=True)
login_count = IntegerField()
# 新しいユーザを insert
User.create(username='huey', login_count=0)
# ユーザのログインをシミュレートする.
# ログインカウントとタイムスタンプの両方が正しく作成または update される.
pycon = datetime.now()
rowid = (User
.insert(username='huey', last_login=now, login_count=1)
.on_conflict(
conflict_target=[User.username], # どの制約条件か?
preserve=[User.last_login], # insert した時の値を使う
update={User.login_count: User.login_count + 1})
.execute())
上記の例を使うと, 必要であれば何度でも upsert クエリーを発行できます. ログイン回数は自動的にインクリメントされ, last_login カラムは update され, 重複行が発生することがありません.
Note
MySQL と Postgresql/SQLite との主な違いとしては, 後者は conflict_target
の指定が必要となります.
(もしこれが怪しげに見える場合は) EXCLUDED
名前空間を使ったより高度な例を示します.
EXCLUDED
ヘルパーを使うと, 競合するデータの中で値を参照できるようになります.
以下の例ではユニークなキー(string)から値(integer)へのマッピングを行うシンプルなテーブルを想定します:
class KV(Model):
key = CharField(unique=True)
value = IntegerField()
# 1行を作成
KV.create(key='k1', value=1)
# EXCLUDED を使ったデモを行います.
# ここでは指定されたキーで新しい値を insert しようとしています.
# そのキーがすでに存在する場合, その値を元の値の *合計* で update し,
# その結果を insert します - 新しい値は元の値より大きくなるはずです.
query = (KV.insert(key='k1', value=10)
.on_conflict(conflict_target=[KV.key],
update={KV.value: KV.value + EXCLUDED.value},
where=(EXCLUDED.value > KV.value)))
# 上記のクエリーを発行すると, "kv" テーブルで既存のデータが
# (key='k1', value=11) のようになります:
query.execute()
# もしこのクエリーを *もう一度* 実行した場合, 何も更新されません.
# これは新しい値(10)は元の値(11)より小さいからです.
詳細は Insert.on_conflict()
および OnConflict
を参照してください.
レコードの削除¶
単一モデルインスタンスの削除では Model.delete_instance()
ショットカットが使えます.
delete_instance()
は指定されたモデルインスタンスを削除し,
さらにオプション( recursive=True 指定)で これに依存するオブジェクトを再帰的に削除します.
>>> user = User.get(User.id == 1)
>>> user.delete_instance() # 削除件数が返される
1
>>> User.get(User.id == 1)
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."id" = ?
PARAMS: [1]
任意の行セットを削除する場合は DELETE クエリーを発行してください。
以下の例では1年以上経過した Tweet
オブジェクトを削除します.
>>> query = Tweet.delete().where(Tweet.creation_date < one_year_ago)
>>> query.execute() # 削除件数が返される
7
詳細は以下のドキュメントを参照してください:
DeleteQuery
単一のレコードを select する¶
Model.get()
メソッドを使って、指定されたクエリーにマッチする
単一のインスタンスを取り出すことができます. プライマリキーを検索する場合、
Model.get_by_id()
というショートカットメソッドを使うことも
できます。
このメソッドは、指定されたクエリーを使って Model.select()
を呼ぶ
ことへのショートカットです。さらに、指定されたクエリーにマッチするモデルが
なかった場合、 DoesNotExist
例外が送出されます。
>>> User.get(User.id == 1)
<__main__.User object at 0x25294d0>
>>> User.get_by_id(1) # 上と同じ.
<__main__.User object at 0x252df10>
>>> User[1] # これも上と同じ.
<__main__.User object at 0x252dd10>
>>> User.get(User.id == 1).username
u'Charlie'
>>> User.get(User.username == 'Charlie')
<__main__.User object at 0x2529410>
>>> User.get(User.username == 'nobody')
UserDoesNotExist: instance matching query does not exist:
SQL: SELECT t1."id", t1."username" FROM "user" AS t1 WHERE t1."username" = ?
PARAMS: ['nobody']
さらに高度な操作を行いたい場合、 SelectBase.get()
が使えます。
以下のクエリーでは charlie という名前のユーザからの、最新のツイートを
取り出しています。:
>>> (Tweet
... .select()
... .join(User)
... .where(User.username == 'charlie')
... .order_by(Tweet.created_date.desc())
... .get())
<__main__.Tweet object at 0x2623410>
詳細は以下のドキュメントを参照してください:
Model.get_or_none()
- if no matching row is found, returnNone
.Model.first()
あれば get なければ create¶
Peewee では get/create タイプの操作を実行するヘルパーメソッド:
Model.get_or_create()
を備えています。これは、まずマッチする行を
取り出そうとします。これに失敗すると、新しい行が作られます。
“create または get” タイプのロジックにおいては、一般的に unique 制約 もしくはプライマリキーにより、重複したオブジェクトを作るのを防いでいます。 一例として、ここでは example User model を使って 新しいユーザーアカウントを登録するための実装をしたいものとします。 User モデルは username フィールドについて unique 制約を持っているため、 私達はデータベースの整合性保証の枠組みに依存することで、重複した username を生成してしまうこと防げます:
try:
with db.atomic():
return User.create(username=username)
except peewee.IntegrityError:
# `username` はユニークなカラムなので、username がすでに存在
# する場合、安全に .get() の呼び出しを行える。
return User.get(User.username == username)
このような種類のロジックを、あなたの Model
クラスの classmethod
として、
容易にカプセル化できます。
前述の例ではまず生成を試み、それが失敗したら取得へとフォールバックしますが、
これはデータベースの unique 制約に依存します。もし、まずレコードの取得を
試みたいという場合は get_or_create()
が使えます。この
メソッドは Django の同名の関数と同じように実装されています。 フィルターとして
WHERE
条件を指定する場合も Django スタイルのキーワード引数が使えます。
この関数は、インスタンス自身、およびオブジェクトが作られたかどうかを表す
boolean 値からなる2要素のタプルを返します。
get_or_create()
を使ってユーザーアカウントの作成処理を
実装する方法は以下の通りです:
user, created = User.get_or_create(username=username)
さて、ここで別の Person
モデルがあり、これを使ってオブジェクトの取得または
生成を行いたいとします。 Person
の取得にあたって必要な条件は彼らの姓と名
だけなのです が、しかし 新しいレコードを作る際には結局彼らの生年月日や
好きな色なども指定することになります:
person, created = Person.get_or_create(
first_name=first_name,
last_name=last_name,
defaults={'dob': dob, 'favorite_color': 'green'})
get_or_create()
に渡されたキーワード引数は、 defaults
辞書を除き、すべてロジックの get()
部分で使われます。 defaults
部分は新しく生成されたインスタンスで値を展開するのに使われます。
詳細は Model.get_or_create()
のドキュメントを参照してください。
複数レコードの select¶
Model.select()
を使ってテーブルから行を取り出せます。 SELECT
クエリーを構築する際、データベースはあなたのクエリーに該当する行を返します。
Peewee ではインデックスやスライス操作を使うだけでなく、これらの行からの
イテレートもできます:
>>> query = User.select()
>>> [user.username for user in query]
['Charlie', 'Huey', 'Peewee']
>>> query[1]
<__main__.User at 0x7f83e80f5550>
>>> query[1].username
'Huey'
>>> query[:2]
[<__main__.User at 0x7f83e80f53a8>, <__main__.User at 0x7f83e80f5550>]
Select
クエリーは賢いので、この中でイテレートやインデックスによる
アクセスやスライスを何度行っても、実際にクエリーが実行されるのは一度だけです。
以下の例では単に select()
へのコールを行い、その戻り値である
Select
のインスタンスに対してイテレートを行います。これは User
テーブルの中のすべての行を返します:
>>> for user in User.select():
... print user.username
...
Charlie
Huey
Peewee
Note
同一クエリーに対する後続のイテレートは、クエリーの結果がキャッシュされて
いるためデータベースにはヒットしません。この振る舞いを無効にする(メモリ
の使用量を減らす)には、イテレートの際に Select.iterator()
を
コールしてください。
外部キーを持つモデルに対してイテレートする場合、関連するモデルの値へのアクセス には注意してください。外部キーまたは後方参照に対するイテレートは、意図しない N+1 query behavior を起こす恐れがあります。
Tweet.user
のような外部キーを作成する場合、 backref を使って
(User.tweets
) という後方参照を作成できます。後方参照は Select
インスタンスとして露出されます:
>>> tweet = Tweet.get()
>>> tweet.user # 関連するモデルを返すような外部キーへのアクセス
<tw.User at 0x7f3ceb017f50>
>>> user = User.get()
>>> user.tweets # クエリーを返す後方参照へのアクセス
<peewee.ModelSelect at 0x7f73db3bafd0>
他の Select
と同様に、user.tweets
後方参照を通したイテレートが
可能です:
>>> for tweet in user.tweets:
... print(tweet.message)
...
hello world
this is fun
look at this picture of my food
モデルインスタンスを返すだけでなく、 Select
クエリーは辞書やタプル、
および名前付きタプルを返すことが可能です。ご自分のユースケースにもよりますが、
行を辞書として扱うほうが簡単な場合もあります。以下に例を示します:
>>> query = User.select().dicts()
>>> for row in query:
... print(row)
{'id': 1, 'username': 'Charlie'}
{'id': 2, 'username': 'Huey'}
{'id': 3, 'username': 'Peewee'}
詳細は namedtuples()
, tuples()
,
dicts()
を参照してください。
巨大な結果セットをイテレートする¶
Select
クエリーを通してイテレートする場合、peewee はデフォルトで
返された行をキャッシュします。これは、結果セットへのインデックスアクセスや
スライシングだけでなく、複数回のイテレートの場合においても追加のクエリーを発生
させないための最適化の一環です。しかしながら、大量の行に対するイテレートを行う
場合、このキャッシュ処理が問題となる場合もあります。
クエリーを通したイテレーションにおいて peewee のメモリ使用量を減らすために、
iterator()
メソッドを使ってください。このメソッドは、
それぞれのモデルを返す際にキャッシュをしないので、大量の結果セットに対する
イテレートがより少ないメモリ使用量で実行できます。
# CSVファイルのダンプの際に、1千万の stat オブジェクトが返されるとする。
stats = Stat.select()
# 想像上のシリアライザクラス
serializer = CSVSerializer()
# 全 stat をループしながらシリアライズする
for stat in stats.iterator():
serializer.serialize_object(stat)
単純なクエリーの場合、行を辞書や名前付きタプルもしくはタプルで返すことで、さらなる
高速化が期待できます。 Select
クエリーにおいて以下のメソッドを使う
ことで、結果の行の型を変更できます:
iterator()
メソッドのコールを追加することでもメモリ使用量を
減らせることを忘れないでください。たとえば上記のコードであれば以下のようになります:
# CSVファイルのダンプの際に、1千万の stat オブジェクトが返されるとする。
stats = Stat.select()
# 想像上のシリアライザクラス
serializer = CSVSerializer()
# 全 stat をループしながら(キャッシュせずにタプルとして結果を生成しつつ)
# シリアライズする
for stat_tuple in stats.tuples().iterator():
serializer.serialize_tuple(stat_tuple)
複数のテーブルから取り出したカラムからなる大量の行に対するイテレートをする場合、
peewee は返されるそれぞれの行を表すモデルのグラフを再構築します。この操作は、
複雑なグラフに対しては遅くなる場合があります。たとえば、ツイートの一覧に加えて
それらツイートの所有者のユーザ名やアバターを合わせて select していた場合、
Peewee はそれぞれの行(ツイートとユーザ)に関する2つのオブジェクトを生成
する必要があるかもしれません。前述の行の型に加え、 objects()
という第4のメソッドがあります。これは行をモデルインスタンスとして返しますが、
そのモデルグラフを解決しようとはしません。
例を示します:
query = (Tweet
.select(Tweet, User) # Select tweet and user data.
.join(User))
# user のカラムは個別の User インスタンスに格納され、tweet.user として
# アクセスできることに注意してください:
for tweet in query:
print(tweet.user.username, tweet.content)
# ".objects()" を使った場合は tweet.user オブジェクトを生成せず、
# すべての user の属性を tweet インスタンスに割り当てます:
for tweet in query.objects():
print(tweet.username, tweet.content)
最大のパフォーマンスを得るために、クエリーを実行してその結果をイテレートする際に、
下層のデータベースのカーソルを使うことができます。Database.execute()
はクエリーオブジェクトを受け取ってクエリーを実行し、 DB-API 2.0 の Cursor
オブジェクトを返します。このカーソルは生の行タプルを返します:
query = Tweet.select(Tweet.content, User.username).join(User)
cursor = database.execute(query)
for (content, username) in cursor:
print(username, '->', content)
レコードのフィルタリング¶
python の通常の演算子を使って特定のレコードをフィルターできます。Peewee は query operators の広範囲な種類をサポートしています。
>>> user = User.get(User.username == 'Charlie')
>>> for tweet in Tweet.select().where(Tweet.user == user, Tweet.is_published == True):
... print(tweet.user.username, '->', tweet.message)
...
Charlie -> hello world
Charlie -> this is fun
>>> for tweet in Tweet.select().where(Tweet.created_date < datetime.datetime(2011, 1, 1)):
... print(tweet.message, tweet.created_date)
...
Really old tweet 2010-01-01 00:00:00
join をまたぐようなフィルターも可能です:
>>> for tweet in Tweet.select().join(User).where(User.username == 'Charlie'):
... print(tweet.message)
hello world
this is fun
look at this picture of my food
複雑なクエリーを表現したい場合、括弧と python のビットごとの or や and 演算子を 使います:
>>> Tweet.select().join(User).where(
... (User.username == 'Charlie') |
... (User.username == 'Peewee Herman'))
Note
Peewee は論理演算子(and
と or
)ではなく ビットごとの 演算子
( &
と |
)を使うことに注意してください。この理由は、python は論理
演算子の戻り値をブール値に変換してしまうためです。またこれは、”IN” クエリーが
in
演算子ではなく .in_()
を使って表現しなければならない理由でもあります。
どんなタイプのクエリーが使えるのかは the table of query operations で調べてみてください。
Note
クエリー中の where 句では、以下のようなおもしろい表現がたくさんあります:
フィールド表現。たとえば
User.username == 'Charlie'
関数表現。たとえば
fn.Lower(fn.Substr(User.username, 1, 1)) == 'a'
カラム間の比較。たとえば
Employee.salary < (Employee.tenure * 1000) + 40000
たとえば username が “a” で始まるユーザのツイートなど、クエリーを入れ子にしても 構いません:
# username が "a" で始まるユーザ一覧を取得する
a_users = User.select().where(fn.Lower(fn.Substr(User.username, 1, 1)) == 'a')
# "IN" クエリーを意味する ".in_()" メソッド
a_user_tweets = Tweet.select().where(Tweet.user.in_(a_users))
さらなるクエリーの例¶
Note
サンプルとなるクエリーに関する広範な例については Query Examples ドキュメントを参照してください。これには PostgreSQL Exercises web サイトにあるクエリーの実装方法について述べられています。
アクティブなユーザを取得する:
User.select().where(User.active == True)
スタッフもしくはスーパーユーザであるユーザを取得する:
User.select().where(
(User.is_staff == True) | (User.is_superuser == True))
名前が “charlie” であるユーザのツイートを取得する:
Tweet.select().join(User).where(User.username == 'charlie')
スタッフもしくはスーパーユーザのツイートを取得する(外部キーが張られていることが前提):
Tweet.select().join(User).where(
(User.is_staff == True) | (User.is_superuser == True))
スタッフもしくはスーパーユーザのツイートを、サブクエリーを使って取得する:
staff_super = User.select(User.id).where(
(User.is_staff == True) | (User.is_superuser == True))
Tweet.select().where(Tweet.user.in_(staff_super))
レコードのソート¶
行を並べて返したい場合は order_by()
メソッドを使います:
>>> for t in Tweet.select().order_by(Tweet.created_date):
... print(t.pub_date)
...
2010-01-01 00:00:00
2011-06-07 14:08:48
2011-06-07 14:12:57
>>> for t in Tweet.select().order_by(Tweet.created_date.desc()):
... print(t.pub_date)
...
2011-06-07 14:12:57
2011-06-07 14:08:48
2010-01-01 00:00:00
並べ替えを指示するために +
と -
プリフィックスを使うこともできます:
# 以下のクエリーは同値です:
Tweet.select().order_by(Tweet.created_date.desc())
Tweet.select().order_by(-Tweet.created_date) # "-" プリフィックスに注意.
# 同様に "+" を昇順という意味で使うことが可能ですが、順序を指定しない場合も、デフォルトは昇順となります。
User.select().order_by(+User.username)
join をまたいだソートを指定することも可能です。たとえば著者のユーザ名と作成日で ソートさせたい場合は以下のようになります:
query = (Tweet
.select()
.join(User)
.order_by(User.username, Tweet.created_date.desc()))
SELECT t1."id", t1."user_id", t1."message", t1."is_published", t1."created_date"
FROM "tweet" AS t1
INNER JOIN "user" AS t2
ON t1."user_id" = t2."id"
ORDER BY t2."username", t1."created_date" DESC
計算結果をソートする場合、必要な SQL の評価式を含めてもいいですし、値に割り当てられた別名を参照することも可能です。これらのメソッドを説明するための例を以下に示します:
# 基本的なクエリーから始めます。私たちはすべてのユーザ名と、ユーザたちが行った
# たくさんのツイートを取得したいとします。結果のソート順は、ツイート数が多い方
# からの降順とします。
query = (User
.select(User.username, fn.COUNT(Tweet.id).alias('num_tweets'))
.join(Tweet, JOIN.LEFT_OUTER)
.group_by(User.username))
select
句の中で使われているのと同じ COUNT 評価式を使ってソートすることもできます。
以下の例ではツイート ID の COUNT()
の降順にソートしています。
query = (User
.select(User.username, fn.COUNT(Tweet.id).alias('num_tweets'))
.join(Tweet, JOIN.LEFT_OUTER)
.group_by(User.username)
.order_by(fn.COUNT(Tweet.id).desc()))
Alternatively, you can reference the alias assigned to the calculated value in
the select
clause. This method has the benefit of being a bit easier to
read. Note that we are not referring to the named alias directly, but are
wrapping it using the SQL
helper:
query = (User
.select(User.username, fn.COUNT(Tweet.id).alias('num_tweets'))
.join(Tweet, JOIN.LEFT_OUTER)
.group_by(User.username)
.order_by(SQL('num_tweets').desc()))
Or, to do things the “peewee” way:
ntweets = fn.COUNT(Tweet.id)
query = (User
.select(User.username, ntweets.alias('num_tweets'))
.join(Tweet, JOIN.LEFT_OUTER)
.group_by(User.username)
.order_by(ntweets.desc())
ランダムなレコードの取得¶
Occasionally you may want to pull a random record from the database. You can accomplish this by ordering by the random or rand function (depending on your database):
Postgresql and Sqlite use the Random function:
# Pick 5 lucky winners:
LotteryNumber.select().order_by(fn.Random()).limit(5)
MySQL uses Rand:
# Pick 5 lucky winners:
LotterNumber.select().order_by(fn.Rand()).limit(5)
レコードのページ制御¶
The paginate()
method makes it easy to grab a page or
records. paginate()
takes two parameters,
page_number
, and items_per_page
.
Attention
Page numbers are 1-based, so the first page of results will be page 1.
>>> for tweet in Tweet.select().order_by(Tweet.id).paginate(2, 10):
... print(tweet.message)
...
tweet 10
tweet 11
tweet 12
tweet 13
tweet 14
tweet 15
tweet 16
tweet 17
tweet 18
tweet 19
If you would like more granular control, you can always use
limit()
and offset()
.
レコードのカウント¶
You can count the number of rows in any select query:
>>> Tweet.select().count()
100
>>> Tweet.select().where(Tweet.id > 50).count()
50
Peewee will wrap your query in an outer query that performs a count, which results in SQL like:
SELECT COUNT(1) FROM ( ... your query ... );
レコードを集約する¶
Suppose you have some users and want to get a list of them along with the count of tweets in each.
query = (User
.select(User, fn.Count(Tweet.id).alias('count'))
.join(Tweet, JOIN.LEFT_OUTER)
.group_by(User))
The resulting query will return User objects with all their normal attributes plus an additional attribute count which will contain the count of tweets for each user. We use a left outer join to include users who have no tweets.
Let’s assume you have a tagging application and want to find tags that have a certain number of related objects. For this example we’ll use some different models in a many-to-many configuration:
class Photo(Model):
image = CharField()
class Tag(Model):
name = CharField()
class PhotoTag(Model):
photo = ForeignKeyField(Photo)
tag = ForeignKeyField(Tag)
Now say we want to find tags that have at least 5 photos associated with them:
query = (Tag
.select()
.join(PhotoTag)
.join(Photo)
.group_by(Tag)
.having(fn.Count(Photo.id) > 5))
This query is equivalent to the following SQL:
SELECT t1."id", t1."name"
FROM "tag" AS t1
INNER JOIN "phototag" AS t2 ON t1."id" = t2."tag_id"
INNER JOIN "photo" AS t3 ON t2."photo_id" = t3."id"
GROUP BY t1."id", t1."name"
HAVING Count(t3."id") > 5
Suppose we want to grab the associated count and store it on the tag:
query = (Tag
.select(Tag, fn.Count(Photo.id).alias('count'))
.join(PhotoTag)
.join(Photo)
.group_by(Tag)
.having(fn.Count(Photo.id) > 5))
スカラー値を取り出す¶
You can retrieve scalar values by calling Query.scalar()
. For
instance:
>>> PageView.select(fn.Count(fn.Distinct(PageView.url))).scalar()
100
You can retrieve multiple scalar values by passing as_tuple=True
:
>>> Employee.select(
... fn.Min(Employee.salary), fn.Max(Employee.salary)
... ).scalar(as_tuple=True)
(30000, 50000)
Window 関数¶
A Window
function refers to an aggregate function that operates on
a sliding window of data that is being processed as part of a SELECT
query.
Window functions make it possible to do things like:
Perform aggregations against subsets of a result-set.
Calculate a running total.
Rank results.
Compare a row value to a value in the preceding (or succeeding!) row(s).
peewee comes with support for SQL window functions, which can be created by
calling Function.over()
and passing in your partitioning or ordering
parameters.
For the following examples, we’ll use the following model and sample data:
class Sample(Model):
counter = IntegerField()
value = FloatField()
data = [(1, 10),
(1, 20),
(2, 1),
(2, 3),
(3, 100)]
Sample.insert_many(data, fields=[Sample.counter, Sample.value]).execute()
Our sample table now contains:
id |
counter |
value |
---|---|---|
1 |
1 |
10.0 |
2 |
1 |
20.0 |
3 |
2 |
1.0 |
4 |
2 |
3.0 |
5 |
3 |
100.0 |
ソートされたウィンドウ¶
Let’s calculate a running sum of the value
field. In order for it to be a
“running” sum, we need it to be ordered, so we’ll order with respect to the
Sample’s id
field:
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(order_by=[Sample.id]).alias('total'))
for sample in query:
print(sample.counter, sample.value, sample.total)
# 1 10. 10.
# 1 20. 30.
# 2 1. 31.
# 2 3. 34.
# 3 100 134.
For another example, we’ll calculate the difference between the current value
and the previous value, when ordered by the id
:
difference = Sample.value - fn.LAG(Sample.value, 1).over(order_by=[Sample.id])
query = Sample.select(
Sample.counter,
Sample.value,
difference.alias('diff'))
for sample in query:
print(sample.counter, sample.value, sample.diff)
# 1 10. NULL
# 1 20. 10. -- (20 - 10)
# 2 1. -19. -- (1 - 20)
# 2 3. 2. -- (3 - 1)
# 3 100 97. -- (100 - 3)
パーティションされたウィンドウ¶
Let’s calculate the average value
for each distinct “counter” value. Notice
that there are three possible values for the counter
field (1, 2, and 3).
We can do this by calculating the AVG()
of the value
column over a
window that is partitioned depending on the counter
field:
query = Sample.select(
Sample.counter,
Sample.value,
fn.AVG(Sample.value).over(partition_by=[Sample.counter]).alias('cavg'))
for sample in query:
print(sample.counter, sample.value, sample.cavg)
# 1 10. 15.
# 1 20. 15.
# 2 1. 2.
# 2 3. 2.
# 3 100 100.
We can use ordering within partitions by specifying both the order_by
and
partition_by
parameters. For an example, let’s rank the samples by value
within each distinct counter
group.
query = Sample.select(
Sample.counter,
Sample.value,
fn.RANK().over(
order_by=[Sample.value],
partition_by=[Sample.counter]).alias('rank'))
for sample in query:
print(sample.counter, sample.value, sample.rank)
# 1 10. 1
# 1 20. 2
# 2 1. 1
# 2 3. 2
# 3 100 1
境界のあるウィンドウ¶
By default, window functions are evaluated using an unbounded preceding start
for the window, and the current row as the end. We can change the bounds of
the window our aggregate functions operate on by specifying a start
and/or
end
in the call to Function.over()
. Additionally, Peewee comes
with helper-methods on the Window
object for generating the
appropriate boundary references:
Window.CURRENT_ROW
- attribute that references the current row.Window.preceding()
- specify number of row(s) preceding, or omit number to indicate all preceding rows.Window.following()
- specify number of row(s) following, or omit number to indicate all following rows.
To examine how boundaries work, we’ll calculate a running total of the
value
column, ordered with respect to id
, but we’ll only look the
running total of the current row and it’s two preceding rows:
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(
order_by=[Sample.id],
start=Window.preceding(2),
end=Window.CURRENT_ROW).alias('rsum'))
for sample in query:
print(sample.counter, sample.value, sample.rsum)
# 1 10. 10.
# 1 20. 30. -- (20 + 10)
# 2 1. 31. -- (1 + 20 + 10)
# 2 3. 24. -- (3 + 1 + 20)
# 3 100 104. -- (100 + 3 + 1)
Note
Technically we did not need to specify the end=Window.CURRENT
because
that is the default. It was shown in the example for demonstration.
Let’s look at another example. In this example we will calculate the “opposite”
of a running total, in which the total sum of all values is decreased by the
value of the samples, ordered by id
. To accomplish this, we’ll calculate
the sum from the current row to the last row.
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(
order_by=[Sample.id],
start=Window.CURRENT_ROW,
end=Window.following()).alias('rsum'))
# 1 10. 134. -- (10 + 20 + 1 + 3 + 100)
# 1 20. 124. -- (20 + 1 + 3 + 100)
# 2 1. 104. -- (1 + 3 + 100)
# 2 3. 103. -- (3 + 100)
# 3 100 100. -- (100)
フィルターされた集約¶
Aggregate functions may also support filter functions (Postgres and Sqlite
3.25+), which get translated into a FILTER (WHERE...)
clause. Filter
expressions are added to an aggregate function with the
Function.filter()
method.
For an example, we will calculate the running sum of the value
field with
respect to the id
, but we will filter-out any samples whose counter=2
.
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).filter(Sample.counter != 2).over(
order_by=[Sample.id]).alias('csum'))
for sample in query:
print(sample.counter, sample.value, sample.csum)
# 1 10. 10.
# 1 20. 30.
# 2 1. 30.
# 2 3. 30.
# 3 100 130.
ウィンドウ定義の再利用¶
If you intend to use the same window definition for multiple aggregates, you
can create a Window
object. The Window
object takes the
same parameters as Function.over()
, and can be passed to the
over()
method in-place of the individual parameters.
Here we’ll declare a single window, ordered with respect to the sample id
,
and call several window functions using that window definition:
win = Window(order_by=[Sample.id])
query = Sample.select(
Sample.counter,
Sample.value,
fn.LEAD(Sample.value).over(win),
fn.LAG(Sample.value).over(win),
fn.SUM(Sample.value).over(win)
).window(win) # Include our window definition in query.
for row in query.tuples():
print(row)
# counter value lead() lag() sum()
# 1 10. 20. NULL 10.
# 1 20. 1. 10. 30.
# 2 1. 3. 20. 31.
# 2 3. 100. 1. 34.
# 3 100. NULL 3. 134.
複数のウィンドウ定義¶
In the previous example, we saw how to declare a Window
definition
and re-use it for multiple different aggregations. You can include as many
window definitions as you need in your queries, but it is necessary to ensure
each window has a unique alias:
w1 = Window(order_by=[Sample.id]).alias('w1')
w2 = Window(partition_by=[Sample.counter]).alias('w2')
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(w1).alias('rsum'), # Running total.
fn.AVG(Sample.value).over(w2).alias('cavg') # Avg per category.
).window(w1, w2) # Include our window definitions.
for sample in query:
print(sample.counter, sample.value, sample.rsum, sample.cavg)
# counter value rsum cavg
# 1 10. 10. 15.
# 1 20. 30. 15.
# 2 1. 31. 2.
# 2 3. 34. 2.
# 3 100 134. 100.
Similarly, if you have multiple window definitions that share similar definitions, it is possible to extend a previously-defined window definition. For example, here we will be partitioning the data-set by the counter value, so we’ll be doing our aggregations with respect to the counter. Then we’ll define a second window that extends this partitioning, and adds an ordering clause:
w1 = Window(partition_by=[Sample.counter]).alias('w1')
# By extending w1, this window definition will also be partitioned
# by "counter".
w2 = Window(extends=w1, order_by=[Sample.value.desc()]).alias('w2')
query = (Sample
.select(Sample.counter, Sample.value,
fn.SUM(Sample.value).over(w1).alias('group_sum'),
fn.RANK().over(w2).alias('revrank'))
.window(w1, w2)
.order_by(Sample.id))
for sample in query:
print(sample.counter, sample.value, sample.group_sum, sample.revrank)
# counter value group_sum revrank
# 1 10. 30. 2
# 1 20. 30. 1
# 2 1. 4. 2
# 2 3. 4. 1
# 3 100. 100. 1
フレームタイプ: RANGE vs ROWS vs GROUPS¶
Depending on the frame type, the database will process ordered groups
differently. Let’s create two additional Sample
rows to visualize the
difference:
>>> Sample.create(counter=1, value=20.)
<Sample 6>
>>> Sample.create(counter=2, value=1.)
<Sample 7>
Our table now contains:
id |
counter |
value |
---|---|---|
1 |
1 |
10.0 |
2 |
1 |
20.0 |
3 |
2 |
1.0 |
4 |
2 |
3.0 |
5 |
3 |
100.0 |
6 |
1 |
20.0 |
7 |
2 |
1.0 |
Let’s examine the difference by calculating a “running sum” of the samples,
ordered with respect to the counter
and value
fields. To specify the
frame type, we can use either:
The behavior of RANGE
, when there are logical duplicates,
may lead to unexpected results:
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(
order_by=[Sample.counter, Sample.value],
frame_type=Window.RANGE).alias('rsum'))
for sample in query.order_by(Sample.counter, Sample.value):
print(sample.counter, sample.value, sample.rsum)
# counter value rsum
# 1 10. 10.
# 1 20. 50.
# 1 20. 50.
# 2 1. 52.
# 2 1. 52.
# 2 3. 55.
# 3 100 155.
With the inclusion of the new rows we now have some rows that have duplicate
category
and value
values. The RANGE
frame type
causes these duplicates to be evaluated together rather than separately.
The more expected result can be achieved by using ROWS
as
the frame-type:
query = Sample.select(
Sample.counter,
Sample.value,
fn.SUM(Sample.value).over(
order_by=[Sample.counter, Sample.value],
frame_type=Window.ROWS).alias('rsum'))
for sample in query.order_by(Sample.counter, Sample.value):
print(sample.counter, sample.value, sample.rsum)
# counter value rsum
# 1 10. 10.
# 1 20. 30.
# 1 20. 50.
# 2 1. 51.
# 2 1. 52.
# 2 3. 55.
# 3 100 155.
Peewee uses these rules for determining what frame-type to use:
If the user specifies a
frame_type
, that frame type will be used.If
start
and/orend
boundaries are specified Peewee will default to usingROWS
.If the user did not specify frame type or start/end boundaries, Peewee will use the database default, which is
RANGE
.
The Window.GROUPS
frame type looks at the window range specification
in terms of groups of rows, based on the ordering term(s). Using GROUPS
, we
can define the frame so it covers distinct groupings of rows. Let’s look at an
example:
query = (Sample
.select(Sample.counter, Sample.value,
fn.SUM(Sample.value).over(
order_by=[Sample.counter, Sample.value],
frame_type=Window.GROUPS,
start=Window.preceding(1)).alias('gsum'))
.order_by(Sample.counter, Sample.value))
for sample in query:
print(sample.counter, sample.value, sample.gsum)
# counter value gsum
# 1 10 10
# 1 20 50
# 1 20 50 (10) + (20+0)
# 2 1 42
# 2 1 42 (20+20) + (1+1)
# 2 3 5 (1+1) + 3
# 3 100 103 (3) + 100
As you can hopefully infer, the window is grouped by its ordering term, which
is (counter, value)
. We are looking at a window that extends between one
previous group and the current group.
Note
For information about the window function APIs, see:
For general information on window functions, read the postgres window functions tutorial
Additionally, the postgres docs and the sqlite docs contain a lot of good information.
行タプル/辞書/名前付きタプルの取り出し¶
Sometimes you do not need the overhead of creating model instances and simply
want to iterate over the row data without needing all the APIs provided
Model
. To do this, use:
objects()
– accepts an arbitrary constructor function which is called with the row tuple.
stats = (Stat
.select(Stat.url, fn.Count(Stat.url))
.group_by(Stat.url)
.tuples())
# iterate over a list of 2-tuples containing the url and count
for stat_url, stat_count in stats:
print(stat_url, stat_count)
Similarly, you can return the rows from the cursor as dictionaries using
dicts()
:
stats = (Stat
.select(Stat.url, fn.Count(Stat.url).alias('ct'))
.group_by(Stat.url)
.dicts())
# iterate over a list of 2-tuples containing the url and count
for stat in stats:
print(stat['url'], stat['ct'])
Returning 句¶
PostgresqlDatabase
supports a RETURNING
clause on UPDATE
,
INSERT
and DELETE
queries. Specifying a RETURNING
clause allows you
to iterate over the rows accessed by the query.
By default, the return values upon execution of the different queries are:
INSERT
- auto-incrementing primary key value of the newly-inserted row. When not using an auto-incrementing primary key, Postgres will return the new row’s primary key, but SQLite and MySQL will not.UPDATE
- number of rows modifiedDELETE
- number of rows deleted
When a returning clause is used the return value upon executing a query will be an iterable cursor object.
Postgresql allows, via the RETURNING
clause, to return data from the rows
inserted or modified by a query.
For example, let’s say you have an Update
that deactivates all
user accounts whose registration has expired. After deactivating them, you want
to send each user an email letting them know their account was deactivated.
Rather than writing two queries, a SELECT
and an UPDATE
, you can do
this in a single UPDATE
query with a RETURNING
clause:
query = (User
.update(is_active=False)
.where(User.registration_expired == True)
.returning(User))
# Send an email to every user that was deactivated.
for deactivate_user in query.execute():
send_deactivation_email(deactivated_user.email)
The RETURNING
clause is also available on Insert
and
Delete
. When used with INSERT
, the newly-created rows will be
returned. When used with DELETE
, the deleted rows will be returned.
The only limitation of the RETURNING
clause is that it can only consist of
columns from tables listed in the query’s FROM
clause. To select all
columns from a particular table, you can simply pass in the Model
class.
As another example, let’s add a user and set their creation-date to the server-generated current timestamp. We’ll create and retrieve the new user’s ID, Email and the creation timestamp in a single query:
query = (User
.insert(email='foo@bar.com', created=fn.now())
.returning(User)) # Shorthand for all columns on User.
# When using RETURNING, execute() returns a cursor.
cursor = query.execute()
# Get the user object we just inserted and log the data:
user = cursor[0]
logger.info('Created user %s (id=%s) at %s', user.email, user.id, user.created)
By default the cursor will return Model
instances, but you can
specify a different row type:
data = [{'name': 'charlie'}, {'name': 'huey'}, {'name': 'mickey'}]
query = (User
.insert_many(data)
.returning(User.id, User.username)
.dicts())
for new_user in query.execute():
print('Added user "%s", id=%s' % (new_user['username'], new_user['id']))
Just as with Select
queries, you can specify various result row types.
共通のテーブル表現¶
Peewee supports the inclusion of common table expressions (CTEs) in all types of queries. CTEs may be useful for:
Factoring out a common subquery.
Grouping or filtering by a column derived in the CTE’s result set.
Writing recursive queries.
To declare a Select
query for use as a CTE, use
cte()
method, which wraps the query in a CTE
object. To indicate that a CTE
should be included as part of a
query, use the Query.with_cte()
method, passing a list of CTE objects.
単純な例¶
For an example, let’s say we have some data points that consist of a key and a floating-point value. Let’s define our model and populate some test data:
class Sample(Model):
key = TextField()
value = FloatField()
data = (
('a', (1.25, 1.5, 1.75)),
('b', (2.1, 2.3, 2.5, 2.7, 2.9)),
('c', (3.5, 3.5)))
# Populate data.
for key, values in data:
Sample.insert_many([(key, value) for value in values],
fields=[Sample.key, Sample.value]).execute()
Let’s use a CTE to calculate, for each distinct key, which values were above-average for that key.
# First we'll declare the query that will be used as a CTE. This query
# simply determines the average value for each key.
cte = (Sample
.select(Sample.key, fn.AVG(Sample.value).alias('avg_value'))
.group_by(Sample.key)
.cte('key_avgs', columns=('key', 'avg_value')))
# Now we'll query the sample table, using our CTE to find rows whose value
# exceeds the average for the given key. We'll calculate how far above the
# average the given sample's value is, as well.
query = (Sample
.select(Sample.key, Sample.value)
.join(cte, on=(Sample.key == cte.c.key))
.where(Sample.value > cte.c.avg_value)
.order_by(Sample.value)
.with_cte(cte))
We can iterate over the samples returned by the query to see which samples had above-average values for their given group:
>>> for sample in query:
... print(sample.key, sample.value)
# 'a', 1.75
# 'b', 2.7
# 'b', 2.9
複雑な例¶
For a more complete example, let’s consider the following query which uses multiple CTEs to find per-product sales totals in only the top sales regions. Our model looks like this:
class Order(Model):
region = TextField()
amount = FloatField()
product = TextField()
quantity = IntegerField()
Here is how the query might be written in SQL. This example can be found in the postgresql documentation.
WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales) / 10 FROM regional_sales)
)
SELECT region,
product,
SUM(quantity) AS product_units,
SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;
With Peewee, we would write:
reg_sales = (Order
.select(Order.region,
fn.SUM(Order.amount).alias('total_sales'))
.group_by(Order.region)
.cte('regional_sales'))
top_regions = (reg_sales
.select(reg_sales.c.region)
.where(reg_sales.c.total_sales > (
reg_sales.select(fn.SUM(reg_sales.c.total_sales) / 10)))
.cte('top_regions'))
query = (Order
.select(Order.region,
Order.product,
fn.SUM(Order.quantity).alias('product_units'),
fn.SUM(Order.amount).alias('product_sales'))
.where(Order.region.in_(top_regions.select(top_regions.c.region)))
.group_by(Order.region, Order.product)
.with_cte(regional_sales, top_regions))
再帰的 CTE¶
Peewee supports recursive CTEs. Recursive CTEs can be useful when, for example, you have a tree data-structure represented by a parent-link foreign key. Suppose, for example, that we have a hierarchy of categories for an online bookstore. We wish to generate a table showing all categories and their absolute depths, along with the path from the root to the category.
We’ll assume the following model definition, in which each category has a foreign-key to its immediate parent category:
class Category(Model):
name = TextField()
parent = ForeignKeyField('self', backref='children', null=True)
To list all categories along with their depth and parents, we can use a recursive CTE:
# Define the base case of our recursive CTE. This will be categories that
# have a null parent foreign-key.
Base = Category.alias()
level = Value(1).alias('level')
path = Base.name.alias('path')
base_case = (Base
.select(Base.name, Base.parent, level, path)
.where(Base.parent.is_null())
.cte('base', recursive=True))
# Define the recursive terms.
RTerm = Category.alias()
rlevel = (base_case.c.level + 1).alias('level')
rpath = base_case.c.path.concat('->').concat(RTerm.name).alias('path')
recursive = (RTerm
.select(RTerm.name, RTerm.parent, rlevel, rpath)
.join(base_case, on=(RTerm.parent == base_case.c.id)))
# The recursive CTE is created by taking the base case and UNION ALL with
# the recursive term.
cte = base_case.union_all(recursive)
# We will now query from the CTE to get the categories, their levels, and
# their paths.
query = (cte
.select_from(cte.c.name, cte.c.level, cte.c.path)
.order_by(cte.c.path))
# We can now iterate over a list of all categories and print their names,
# absolute levels, and path from root -> category.
for category in query:
print(category.name, category.level, category.path)
# Example output:
# root, 1, root
# p1, 2, root->p1
# c1-1, 3, root->p1->c1-1
# c1-2, 3, root->p1->c1-2
# p2, 2, root->p2
# c2-1, 3, root->p2->c2-1
外部キーと JOIN¶
This section have been moved into its own document: リレーションと JOIN(目次のみ).